ON DISJOINTLY REPRESENTABLE SETS

Peter FRANKL and János PACH

Dedicated to Paul Erdős on his seventieth birthday

Received 21 April 1983

A system of sets $E_1, E_2, ..., E_k \subset X$ is said to be disjointly representable if there exist $x_1, x_2, ..., x_k \in X$ such that $x_i \in E_j \Leftrightarrow i = j$. Let f(r, k) denote the maximal size of an r-uniform set-system containing no k disjointly representable members. In the first section the exact value of f(r, 3) is determined and (asymptotically sharp) bounds on f(r, k), k > 3 are established. The last two sections contain some generalizations, in particular we prove an analogue of Sauer's theorem [16] for uniform set-systems.

1. Set-systems without k disjointly representable members

We start by recalling two well-known and frequently used definitions in combi-

- natorial set theory. Given an arbitrary set X, $E_1, E_2, ..., E_k \subseteq X$ are said
 (a) to form a Δ -system, if there exists a subset $K \subseteq X$ such that $E_i \cap E_j = K$ for every pair (i, j), $1 \le i < j \le k$ (Cf. [7].)
- (b) to have a system $\{x_1, x_2, ..., x_k\}$ of distinct representatives, if all x_i are different and $x_i \in E_i$ for every $i, 1 \le i \le k$. (See e.g. [1].)

In the present note we introduce the following intermediate notion, establishing a natural link between the above two definitions.

Definition 1. The sets $E_1, E_2, ..., E_k \subseteq X$ are said to be disjointly representable if there exist $x_1, x_2, ..., x_k \in X$ such that

$$x_i \in E_i \Leftrightarrow i = j \quad (1 \le i, j \le k),$$

in other words, no E_i is contained in the union of the others.

If $E_1, E_2, ..., E_k$ form a Δ -system, then they are disjointly representable and. consequently, have a system of distinct representatives.

A classical result of Erdős and Rado [7] states that any r-uniform set-system consisting of at least $r!k^r$ sets contains a k member Δ -system. Our next theorem shows that this bound can be essentially improved, if, instead of a Δ -system, the existence of k disjointly representable sets is to be guaranteed. Let T(n, r, k), r < k < n, denote the Turán number, i.e. the largest integer T such that there exists an r-uniform setsystem with T members on an n element set X, which does not contain all r-tuples of a k element subset of X.

Theorem 1. Let $f(r, k) = \max |\mathcal{H}|$, where the maximum is taken over all r-uniform set-systems \mathcal{H} containing no k disjointly representable members. Then we have

(i)
$$T(r+k-1, k-1, k) \le f(r, k) \le {r+k-1 \choose k-1}, \quad (r \ge 1, k \ge 2),$$

(ii)
$$f(r,3) = \left\lfloor \frac{r+2}{2} \right\rfloor \cdot \left\lceil \frac{r+2}{2} \right\rceil, \quad (r \ge 1),$$

and (up to isomorphism) the only r-uniform set-system $\mathcal{H}_{r,3}$ without 3 disjointly representable members, satisfying $|\mathcal{H}_{r,3}|=f(r,3)$, can be constructed as follows. Let A and B be disjoint sets with $|A|=\left\lfloor\frac{r+2}{2}\right\rfloor$ and $|B|=\left\lceil\frac{r+2}{2}\right\rceil$, and let $\mathcal{H}_{r,3}:=\{E\subset A\cup B||E|=r \text{ and } |A\setminus E|=|B\setminus E|=1\}$.

(iii)
$$f(2, k) = {k+1 \choose 2} - {k+1 \choose 2}, \quad (k \ge 2),$$

and the only graph $\mathcal{H}_{2,k}$ with $|\mathcal{H}_{2,k}| = f(2,k)$, which contains no k disjointly representable edges, can be obtained from the complete graph K_{k+1} by deleting $\left\lceil \frac{k+1}{2} \right\rceil$ edges as disjoint as possible.

Proof. (i): Take any (k-1)-uniform set-system \mathscr{F} on an r+k-1 element set X, which does not contain all (k-1)-tuples of any k element subset of X. Then \mathscr{H} := $\{X \setminus F | F \in \mathscr{F}\}$ is obviously an r-uniform set-system without k disjointly representable members. This proves the lower bound in (i).

Let $\mathscr{H} = \{E_1, E_2, ..., E_m\}$ be an arbitrary r-uniform setsystem containing no k disjointly representable sets. For each i $(1 \le i \le m)$, choose a minimal subset $F_i \subseteq \left(\bigcup_{j=1}^m E_j\right) \setminus E_i$ so that $F_i \cap E_j \ne \emptyset$ for all $j \ne i$. Observe that $|F_i| \le k-1$ $(1 \le i \le m)$, otherwise, by minimality, F_i would be a representative system of $|F_i| \ge k$ disjointly representable members of \mathscr{H} . The upper bound is now an immediate consequence of the following lemma due to Bollobás [2] (see also Jaeger—Payan [10], Katona [12], Lovász [14]):

Lemma 1. Let $\mathcal{H} = \{E_1, E_2, ..., E_m\}$, $\mathcal{H}' = \{F_1, F_2, ..., F_m\}$ be two set-systems satisfying $|E_i| \le r$ and $|F_i| \le k-1$ for all i, $1 \le i \le m$. Suppose further that $E_i \cap F_j = \emptyset \Leftrightarrow i = j$. Then $m \le \binom{r+k-1}{k-1}$.

(ii): We proceed by induction on r. In case r=1 the assertion trivially holds. Assume now r>1, and let $\mathscr{H} = \{E_1, E_2, ..., E_m\}$, $\mathscr{H}' = \{F_1, F_2, ..., F_m\}$ denote the same set-systems as in the previous section (with k=3). Suppose first that $|F_i|<2$ for some i. Then, applying the induction hypothesis to the system $\{E_j \setminus F_i | 1 \le j \le m, j \ne i\}$, we obtain $m \le f(r-1, 3) + 1 < \left\lceil \frac{r+2}{2} \right\rceil \cdot \left\lceil \frac{r+2}{2} \right\rceil$ and we are done.

Hence, we may assume $|F_i|=2$ for all i. In other words, \mathcal{H}' is a simple graph. Set $\mathcal{H}_1' := \{F_i \in \mathcal{H}' | F_i \subseteq E_1\}$ and $\mathcal{H}_2' := \mathcal{H}' \setminus \mathcal{H}_1'$. The following three properties can readily be checked by the definitions, using the fact that \mathcal{H} does not contain 3 disjointly representable sets:

- (a) \mathcal{H}' is a triangle-free graph;

(b) $E_1 \cap F_i \neq \emptyset$ for every i, $1 < i \le m$; (c) $|\{F_i : x \in F_i \in \mathcal{H}_2' | F_i \in x\}| \le 1$ for every $x \in E_1$. From here, applying the Turán theorem [18] to \mathcal{H}_1' , it follows that

$$m = |\mathcal{H}'| = |\mathcal{H}_1'| + |\mathcal{H}_2'| \leq \left\lfloor \frac{r}{2} \right\rfloor \cdot \left\lceil \frac{r}{2} \right\rceil + r + 1 = \left\lfloor \frac{r+2}{2} \right\rfloor \cdot \left\lceil \frac{r+2}{2} \right\rceil,$$

as required. The verification of the uniqueness of the extremal construction described in the theorem is left to the reader.

(iii): Let \mathcal{H} be an arbitrary graph on an *n*-element vertex set. Observe that k edges of H are disjointly representable if and only if they form a number of vertex-disjoint stars. Thus, the following two properties are equivalent:

- (a) \mathcal{H} does not contain k disjointly representable edges;
- (b) every set of n-k vertices has a common neighbour in $\overline{\mathcal{H}}$ (i.e. in the complement of graph \mathcal{H}).

Hence, (iii) follows from the next result due to P. Erdős and L. Moser [6]:

Lemma 2. Given two natural numbers $t, n \ (t < n)$, let G be a graph of n vertices with the property that any t of them have a common neighbour. Then G has at least (n-t+1).

$$\cdot (t-1) + {t-1 \choose 2} + {n-t+1 \choose 2}$$
 edges, and equality holds here if and only if G has $t-1$

vertices joined to every other vertex, and $\left\lceil \frac{n-t+1}{2} \right\rceil$ further edges as disjoint as possible.

Remarks 1. The gap between the lower and upper bounds in part (i) of Theorem 1 is not too big, if $r\gg k$ are large enough. It is known (see e.g. [13]) that, for any fixed $k \ge 2$, $\lim_{r \to \infty} \frac{T(r+k-1, k-1, k)}{\binom{r+k-1}{k-1}}$ is a positive constant c_k , and $\lim_{k \to \infty} c_k = 1$

(cf. [17]).

- **2.** Parts (ii) and (iii) of the theorem assert f(r, 3) = T(r+2, 2, 3) and f(2, k)=T(k+1, k-1, k), resp. That is, in these cases the lower bound given by (i) is sharp. One might be tempted to think that this is also true in general, i.e. f(r, k)= =T(r+k-1, k-1, k) for all $r \ge 1, k \ge 2$.
- 3. A set-system \mathcal{H} is said to be of rank r, if $|E| \le r$ for every $E \in \mathcal{H}$. Let $f(\leq r, k) = \max |\mathcal{H}|$, where the maximum is taken over all set-systems \mathcal{H} of rank r, containing no k disjointly representable members. Then we obviously have f(r, k) $< f(\le r, k)$. E.g., in case k=3 one can prove $f(\le r, 3) = {r+2 \choose 2}$, and an optimal construction is the following: $\mathcal{H} := \{E_{ii} | 1 \le i < j \le r+2\}$, where $E_{ij} := \{k | i < k < j \le r+2\}$ or $j < k \le r + 2$.

2. Disjointly t-representable sets

Hajnal [11] has suggested the following modification of the above problem: What happens if, instead of k disjointly representable sets, we look for k sets such that each can be represented by more than one point?

Definition 2. The sets $E_1, E_2, ..., E_k \subseteq X$ are said to be disjointly t-representable if one can choose disjoint t-element subsets $X_i \subseteq E_i$ $(1 \le i \le k)$ such that $X_i \cap E_j = \emptyset$ whenever $i \neq i$.

An apparent difficulty is that, given any $r \ge t > 1$, one can construct arbitrarily large r-uniform set-systems without 2 disjointly t-representable members. (E.g. a large Δ -system with a kernel of size at least r-t+1 will do.) However, the following analogue of Theorem 1 is valid.

Theorem 2. Given any four natural numbers t, r, k, l $(r \ge t, k \ge 3, l \ge 2)$, let $f_t^l(r, k)$ $=\max |\mathcal{H}|$, where the maximum is taken over all r-uniform set-systems \mathcal{H} having the following two properties:

- (i) \mathcal{H} does not contain an 1 member Δ -system whose kernel is of size >r-t;
- (ii) \mathcal{H} does not contain k disjointly t-representable members.

Then we have

$$c(k, l, t)r^{(k-1)t} \leq f_t^l(r, k) \leq c'(k, l, t)r^{kt-1}$$

where c and c' are positive constants independent of r.

Proof. The lower bound can be established by the following construction. Given an (r+kt-1)-element set X, we can select a system \mathcal{F} of (kt-1)-tuples of X so that

(a)
$$|F_1 \cap F_2| < (k-1)t$$
 for every pair $F_1, F_2 \in \mathcal{F}$:

(a)
$$|F_1 \cap F_2| < (k-1)t$$
 for every pair $F_1, F_2 \in \mathcal{F}$;
(b) $|\mathcal{F}| \ge \frac{1}{2} \binom{r+kt-1}{(k-1)t} / \binom{kt-1}{(k-1)t}$, (see Rödl [15]).

Choose a partition $X_1 \cup X_2 \cup ... \cup X_{kt-1}$ of X so as to maximize the cardinality of the set-system

$$\mathcal{F}' := \{ F \in \mathcal{F} | | F \cap X_i | = 1, i = 1, 2, ..., kt - 1 \}.$$

We may assume (cf. [3], [4]) that

$$|\mathscr{F}'| \geq \frac{(kt-1)!}{(kt-1)^{kt-1}} |\mathscr{F}| \geq c(k,t) r^{(k-1)t}.$$

Observe, finally, that $\mathcal{H} = \{X - F | F \in \mathcal{F}'\}$ is an r-uniform set-system meeting both requirements (i) and (ii), (with l=2).

Next we prove the upper bound. Let \mathcal{H} be a set-system satisfying (i) and (ii). Take k-1 distinct members $E_1, E_2, ..., E_{k-1} \in \mathcal{H}$ such that $E_1 \cup E_2 \cup ... \cup E_{k-1} = E^*$ is as large as possible. Then $|E \cap E^*| > r - t$ for every $E \in \mathcal{H}$. For if not, then either $E, E_1, E_2, ..., E_{k-1}$ would be disjointly t-representable or replacing some E_i by Ewe would get a contradiction with the maximum property of E^* .

On the other hand, the above cited result of Erdős and Rado [7] yields that any (r-t+1)-element subset of E^* can be contained only in at most $(t-1)!I^{t-1}$

members of \mathcal{H} , otherwise (i) would be violated. Thus $|\mathcal{H}| \leq (t-1)! l^{t-1} |\mathcal{H}^*|$, where \mathcal{H}^* is the trace of \mathcal{H} on E^* , i.e.

$$\mathscr{H}^* := \mathscr{H}|_{E^*} = \{E \cap E^* | E \in \mathscr{H}\}.$$

We need the following well-known result of Sauer [16] (see also [8], [9]):

Lemma 3. Let \mathscr{F} be a system of subsets of an n element set X. Then either $|\mathscr{F}| \leq \sum_{i=0}^{K-1} \binom{n}{i}$, or there exists a K element subset $Y \subseteq X$ such that for every $Y' \subseteq Y$ one can find $F \in \mathscr{F}$ with $F \cap Y = Y'$.

Applying this to \mathcal{H}^* (with $n=|E^*| \le (k-1)r$, K=kt) and noticing that, by condition (ii) in the theorem, the latter possibility is excluded, we obtain the desired upper bound on $|\mathcal{H}^*|$ (and hence on $|\mathcal{H}|$).

3. Traces of set-systems

Throughout this section let $\binom{k}{\geq i}$, $\binom{k}{\leq i}$ and $\binom{k}{=i}$ stand for the set-systems consisting of all at least i-, at most i- and exactly i-element subsets of a k-element set, resp.

Given two set-systems \mathcal{H} and \mathcal{F} , \mathcal{F} is called a *trace* of \mathcal{H} (in short, $\mathcal{H} \to \mathcal{F}$), if \mathcal{F} is isomorphic to a subsystem of

$$\mathscr{H}|_{Y} := \{E \cap Y | E \in \mathscr{H}\},\$$

the restriction of \mathcal{H} to a subset Y.

The problem investigated in the first section of this paper belongs to the following general pattern: Determine

$$m(n, r, \mathscr{F}) := \max |\mathscr{H}|,$$

where the maximum is taken over all r-uniform set-systems \mathcal{H} on an n element ground-set, with the property $\mathcal{H} + \mathcal{F}$.

Using these terms (and the notation in Theorem 1), we have $m\left(n, r, \binom{k}{=1}\right)$ = f(r, k), provided n is large enough.

Further, Lemma 3 (Sauer's theorem) immediately implies $m\left(n, r, \binom{k}{\geq 0}\right)$ $\leq \sum_{i=0}^{k-1} \binom{n}{i}$. Next we show that the first k-1 terms of this sum can be omitted. The proof uses a simple linear algebraic approach developed in [9].

Theorem 3. Let n, r, k be natural numbers $(n \ge r \ge k)$, and let \mathcal{H} be an r-uniform set-system on an n element ground-set X. Then either $|\mathcal{H}| \le \binom{n}{k-1}$, or $\mathcal{H} \to \binom{k}{\ge 0}$.

Proof. Let $Y_1, Y_2, ..., Y_{\binom{n}{k-1}}$ be an enumeration of all (k-1)-tuples of X, and let

 $E_1, E_2, ..., E_{|\mathscr{H}|}$ denote the members of \mathscr{H} . Define an $|\mathscr{H}| \times \binom{n}{k-1}$ matrix $A = (a_{ij})$, as follows.

$$a_{ij} := \begin{cases} 1 & \text{if} \quad E_i \supseteq Y_j \\ 0 & \text{if} \quad E_i \supseteq Y_i \end{cases}; \quad \left(1 \le i \le |\mathcal{H}|, \ 1 \le j \le \binom{n}{k-1} \right).$$

Assume $|\mathcal{H}| > \binom{n}{k-1}$. Then the rows of A cannot be linearly independent. That is, one can choose suitable reals $\alpha_1, \alpha_2, ..., \alpha_{|\mathcal{H}|}$ (not all of them being zero) such that

$$\sum_{i=1}^{|\mathcal{K}|} \alpha_i a_{ij} = 0 \quad \left(1 \le j \le \binom{n}{k-1}\right).$$

Let Y be a minimal subset of X with $\sum_{E_i \supseteq Y} \alpha_i \neq 0$. We clearly have $|Y| \ge k$, and for every $Z \subseteq Y$

$$\sum_{E_i \cap Y = Z} \alpha_i = (-1)^{|Y - Z|} \sum_{E_i \supseteq Y} \alpha_i \neq 0$$

holds, as can be shown by an easy backwards induction on |Z|. This yields, in particular, that for every $Z \subseteq Y$ there exists $E_i \in \mathcal{H}$ with $E_i \cap Y = Z$.

Corollary. Given natural numbers $n, k \ (n \ge k)$, we have

Remarks 4. The upper bound in (*) cannot be improved without any further restriction on n and k. (Set n=2k-1.)

On the other hand, the lower bound can also be attained. If i=k-1, for instance, then the proof of Theorem 1 (i) applied to the system $\mathcal{H} := \{X - E | E \in \mathcal{H}\}$ shows that

$$m\left(n, k, \binom{k}{\geq k-1}\right) = \binom{n-1}{k-1}.$$

5. One can easily prove that

(**)
$$T(n-1, k-1, k) \leq m \left(n, k, \binom{k}{k-1}\right) \leq T(n, k-1, k).$$

As a matter of fact, we suspect that in both (*) and (**) the lower bound is attained if n is sufficiently large. In particular, for i=0, this would yield an interesting generalization of the Erdős—Ko—Rado theorem [5].

Acknowledgement. The authors would like to express their gratitude to Paul Erdős, András Hajnal and Norbert Sauer for their valuable comments.

References

- [1] C. Berge, Graphs and Hypergraphs, North-Holland, 1973.
- [2] B. Bollobás, On generalized graphs, Acta Math. Hung. 16 (1965), 447-452.
- [3] P. Erdős, On bipartite subgraphs of a graph (in Hungarian), Matematikai Lapok 18 (1967), 283—288.
- [4] P. ERDŐS and D. J. KLEITMAN, On coloring graphs to maximize the proportion of multicolored k-edges, J. Combinatorial Th. 5 (1968), 164—169.
- [5] P. Erdős, Chao Ko and R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford (2), 12 (1961), 313—320.
- [6] P. Erdős and L. Moser, An extremal problem in graph theory, J. Austral. Math. Soc. 11 (1970), 42-47.
- [7] P. ERDős and R. RADO, Intersection theorems for systems of sets, J. London Math. Soc. 35 (1960), 85—90.
- [8] P. Frankl, On the trace of finite sets, J. Combinatorial Th. Ser. A, 34 (1983), 41-45.
- [9] P. Frankl and J. Pach, On the number of sets in a null-t-design, European J. Comb. 4 (1983), 21-33.
- [10] F. JAEGER and C. PAYAN, Determination du nombre d'aretes d'un hypergraphe τ-critique, C. R. Acad. Sc. Paris 273 (1971), 221—223.
- [11] A. HAJNAL, Personal communication.
- [12] G. O. H. KATONA, Solution of a problem of A. Ehrenfeucht and J. Mycielsky, J. Comb. Th. 17 (1974), 265—266.
- [13] G. KATONA, T. NEMETZ and M. SIMONOVITS, On a graph problem of Turán (in Hungarian), Matematikai Lapok 15 (1964), 228—238.
- [14] L. Lovász, Topological and algebraic methods in graph theory, in: Graph Theory and Related topics (J. A. Bondy and U. S. R. Murty, eds.), Academic Press, New York 1979, 1—14.
- [15] V. RÖDL, Almost Steiner systems always exist, to appear in European J. of Comb.
- [16] N. SAUER, On the density of families of sets, J. Combinatorial Th. Ser. A, 13 (1972), 145-147.
- [17] A. F. SIDORENKO, On the Turán number T(n, 5, 4) and on the number of monochromatic 4-cliques in a two-coloured 3-graph (in Russian), Voprosi Kibernetiki, Komb. Anal. i Teoria Grafov, Nauka, Moscow 1980, 117—124.
- [18] P. Turán, On the theory of graphs, Coll. Math. 3 (1954), 19—30.

P. Frankl

CNRS 15 Quai Anatole France, 75007 Paris, France

J. Pach

Mathematical Institute of the Hungarian Academy of Sciences Budapest, H-1395, Pf. 428, Hungary